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Abstract Numerical studies are carried out to investigate the liquid-lubricated herringbone--
grooved journal bearings (HGJBs) performance (such as the pressure and cavitation distribution,
load capacity and attitude angle, stability, etc.). Symmetrical and non-symmetrical HGJBs are
studied, respectively, and the herringbone grooves’ influence on the stability of HGJBs is analyzed
carefully. It was found that the maximum pressure and load capacity increase with the increase
of eccentricity ratio while the attitude angle decreases with the increase of eccentricity ratio.
The cavitation may occur in the fluid film of journal bearings while the eccentricity ratio
increases to some critical value. The area of cavitated region increases with the increase of the
eccentricity ratio. For non-symmetrical HGJBs, the pressure and cavitation distribution is
asymmetrical oo.

Nomenclature
hg, Hg ¼ groove depth
b �b ¼ bulk modulus, dimensionless

b ð �b ¼ ðb=vmÞðc=RÞ2Þ
c, R ¼ radial clearance,

bearing radius
L1, L2 ¼ grooves’ length of part one, part two
L ¼ length of journal bearing)

ðL ¼ L1 þ L2Þ
L/D ¼ ratio of length to diameter ðD ¼ 2RÞ
h, �h ¼ film thickness, dimensionless film

thicknes (h/c)
wg, wr ¼ groove width, groove ridge width
P, �P ¼ film pressure, dimensionless P,

�P ¼ ðP=vmÞðc=RÞ2

PB, �Ps ¼ ambient pressure, dimensionless
ambient pressure

PC, �Pc ¼ cavitation pressure, dimensionless
cavitation pressure

W, �W ¼ load capacity, dimensionless
W ð �W ¼ ðW=vmR 2Þðc=RÞ2Þ

f, a ¼ attitude angle, groove angle

m, r ¼ fluid viscosity, fluid density
rc ¼ fluid density at cavitation pressure
v, U ¼ angular rotation speed, rotational

speed ðv · RÞ
e, 1 ¼ eccentricity, eccentricity ratio (e/c)

(or epsn)
t, �t ¼ time, dimensionless time (vt)
x ¼ coordinate in circumference

direction
�x ¼ dimensionless x; ð�x ¼ x=2pRÞ
y ¼ coordinate in fluid film

thickness
z ¼ coordinate in axial direction
�z ¼ dimensionless of z ð�z ¼ z=LÞ
j ¼ coordinate axis in the transformed

plane
h ¼ coordinate axis in the transformed

plane
f ¼ circumferential coordinate
u ¼ density ratio (r/rc)
g ¼ switch function
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1. Introduction
With the trend of miniaturization and high-speed requirement in modern
industry, much attention has been given to the use of fluid dynamic bearings,
especially the herringbone-grooved journal bearings (HGJBs). For example, in
computer industry, after many research works, HGJBs are used in the spindle
motor of hard disk drive (HDD) to replace the traditional ball bearings.
Compared with the traditional ball bearings, the HGJBs have considerably
lower noise level, relatively higher stiffness and better stability, even worked
under high rotational speeds.

For the fluid dynamic bearings, with the increase of the eccentricity ratio, the
cavitation may occur in the fluid film. When cavitation collapses, cavitation
erosion may occur and cause cavitation damage to the bearings (Dowson
and Taylor, 1979). Thus, for the numerical study of fluid dynamic bearings,
how to treat the cavitation boundary condition is very important. Various
cavitation boundary conditions have been proposed by earlier researchers,
such as the Sommerfeld conditions, Reynolds conditions and JFO
(Jakobsson-Floberg-Olsson, named after Jakobsson and Floberg (1957) and
Olsson (1965)) theory, etc. Among them, the JFO theory is regarded as one of
the best theories that account for the flow physics of a fluid film: the rupture
and the reformation. According to this theory, the fluid film in journal bearings
can be divided into two zones: the full-film zone and the cavitated zone.
However, the mass conservation is preserved in the whole fluid film, not only in
the full-film zones, but also in the cavitated zones and in the interfaces between
them. Many case studies show that, when this theory is applied to the
numerical simulation of the journal bearings, the predicted results match the
experimental data very well.

Based on the JFO theory, Elrod and Adams (1974) derived a generalized
form of Reynolds’ differential equation in which the complexities of
locating film rupture and reformation boundaries are avoided as this
scheme automatically predicts cavitation regions and preserves mass
continuity within all the fluid film for the liquid-lubricated bearings. Later,
Elrod (1981) modified the finite definite difference portion of the scheme,
and presented a much better cavitation algorithm: the so-called Elrod’s
cavitation algorithm. This computational scheme automatically implements
the JFO theory, then mass conservation is preserved in the whole
fluid film.

Studies on the HGJBs were started very early: in 1965, Hirs did some
research on HGJBs by experimental study and theoretical analysis. Even at
present, his experimental findings are referred to by many researchers.
However, in the earlier studies of HGJBs, the cavitation is often neglected.
Recently, Elrod’s cavitation algorithm or its modified version was introduced to
study journal bearings, especially HGJBs, a lot of progresses have been made.
Vijayaraghavan and Keith (1990a) extended the work of Elrod (1981) and
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proved that an approximate factorization technique in conjunction with
Newton’s iteration method for time accurate solutions can apply to both steady
and unsteady state conditions. The grid transformation and grid adaptation
techniques, presented by Vijayaraghavan and Keith (1990b) was stated to be
more suitable for more complicated problems and for saving the computational
efforts.

Jang and Chang (2000) analyzed the performance of a HGJB in the
spindle motor of a computer HDD including the effects of cavitation. In
their paper, the Reynolds equation is solved using the finite volume method.
The performance (such as the load capacity, the attitude angle, the bearing
torque and the cavitation ratio of the fluid film, etc.) is studied for the
symmetrical HGJBs.

Wan et al. (2002) presented a numerical model to describe better the
cavitated fluid flow phenomena in the liquid lubricated HGJBs. By using an
effective “following the groove” grid transformation method, the singularity at
the groove edges is avoided. The cavitation footprint of the HGJBs is analyzed,
for the symmetrical and asymmetrical groove patterns, respectively.

In this work, using the modified Elrod’s algorithm, the liquid-lubricated
HGJBs’ performance is analyzed. By incorporating the JFO theory and Elrod’s
algorithm, the modified Reynolds equation is used as the governing equation.
To capture all of the groove boundaries, the groove-shape-fitted grids are
constructed (Figures 1 and 2) and a coordinate transformation method is used.
After the modified Reynolds equation is transformed into the rectangular
computational region, the finite difference discretizing method is used to
discrete the equation and the alternating direction implicit (ADI) method is
used to solve the equation. Based on this methodology, the plain journal
bearings (plain JBs), the symmetrical and non-symmetrical HGJBs are
analyzed, respectively.

Figure 1.
Unwrapped geometry

and some parameters of
a HGJBs
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2. Methodology
2.1 Governing equations
In the numerical studies of HGJBs, the external mass forces and inertial forces
are often neglected. For the laminar flow of Newtonian lubricants, the
two-dimensional transient form of Reynolds equation can be written as:

›rh

›t
þ

›

›x

rhU

2
2

rh3

12m

›P

›x

� �
þ

›
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in which the compressibility effect of the fluid is considered.
According to the definition of the bulk modulus b, the fluid’s density field is

related to the pressure field of the fluid film by:

b ¼ r ›P=›r ð2Þ

To satisfy the JFO theory, in which the pressure throughout the cavitated zone
is taken as a constant, the switch function g and the non-dimensional density
variable u are introduced. Then equation (2) becomes:

gb ¼ r
›P

›r
¼ u

›P

›u
ð3Þ

where u ¼ r=rc; and in cavitated region: u , 1; g ¼ 0 whereas in the full film
region, u $ 1; g ¼ 1: From equation (3), we obtain:

P ¼ Pc þ gb ln u ð4Þ

Using equations (3) and (4), equation (1) can be rewritten as:
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The non-dimensional form of this equation is:

Figure 2.
Groove-shape-fitted
grids system for HGJBs
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2.2 Coordinate transformation
To model the shape of the herringbone grooves accurately, the groove--
shape-fitted grids are constructed: the grids are arranged along the slant
grooves in the (x-z) plane (Figures 1 and 2). Then to simplify the computation,
a coordinate transformation method – from the physical region (x-z) to
the rectangular computational region (j-h) is used (Shu et al., 2000).
The x-direction is taken as the j-direction while the groove direction is taken as
the h-direction.

f x ¼
›f

›x
¼ jx

›f

›j
þ hx

›f

›h
ð7Þ

f z ¼
›f

›z
¼ jz

›f

›j
þ hz

›f

›h
ð8Þ

jx ¼ J 21zh; hx ¼ 2J 21zj; jz ¼ 2J 21xh; hz ¼ J 21xj ð9Þ

where J ¼ xj zh 2 xh zj is the Jacobian of the transformation.
Hence, for steady state, the non-dimensional Reynolds’ equation in the

computational domain can be obtained as:
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2.3 Load capacity and attitude angle
When the pressure and velocity fields of the fluid film are known, the load
capacity W, and attitude angle f can be calculated by using the following
formulae:
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W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
w þ F2

R

q
ð11Þ

f ¼ tan21ðFw=FRÞ ð12Þ

where FR is the pressure force acting along the line of centers, and Ff is the
pressure force normal to that line.

Fw ¼

S

ZZ
P sinw dx dz ð13Þ

FR ¼

S

ZZ
P cosw dx dz ð14Þ

2.4 Numerical method
As in other numerical studies on journal bearings (Jang and Chang, 2000; Wan
et al., 2002), the fluid film is unwrapped around the circumferential direction
(Figure 1). The Reynolds equation can be solved in a two-dimensional domain.
Equation (1) shows that the flow in x-direction consists of two parts. One part is
due to shear flow and the other part is due to diffusion flow (pressure gradient),
while the flow in the z-direction is due to diffusion flow only.

In this work, the finite difference method is used to discretize the governing
equation – equation (10). For the diffusion flow terms, many symmetric
numerical methods, such as central finite difference method and Galerkin finite
element method, can be used. However, for the shear flow terms, because the
physical information is transferred from the upstream to the downstream, it is
a non-symmetrical problem in space. So, there will be some intrinsic difficulties
if the symmetrical numerical methods are used to them. Conversely, the
upwind scheme, in which the numerical information propagates from upstream
to downstream conforming to the physical phenomenon, is very powerful to
deal with the shear terms. So, in this study, the central difference method is
used to discretize the pressure flow terms, and the second order upwind scheme
is used to discretize the shear flow terms.

The present problem is simplified into a two-dimensional problem. Once
discretization is completed, the equation is solved by using the ADI method. In
this approach, each time step is split into two parts. In the first part, all rows are
implicitly solved by using the available values of the variables at the previous
step. In the second part, all columns are solved implicitly by using the available
values of the variables obtained from the first part. A four-stage Runge-Kutta
(R-K) method is also tried, but it is found that the ADI method is more efficient
and stable than the R-K method. However, in our calculations, even if we use
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the ADI method, some instability may occur if the time step is too large. In other
words, if we choose a proper time step, the ADI method is stable.

3. Validation
Based on the equations and methodology mentioned earlier, a computational
program is built up to study the performance of the journal bearings. To
validate this program, two cases (Table I) are studied and the numerical results
are compared with the experimental data, respectively.

First, a case of plain JB (no grooves on the surface of the shaft or bush) is
introduced and the numerical results are compared with Jakobsson and
Floberg’s (1957) experimental data. Table I (case 1) presents the experimental
operating conditions detailed by Brewe (1986). Figure 3 shows the
circumferential pressure distribution at an axial location: the axial distance
(DL) equals (1/5)D. This figure shows that the numerical results match well
with the experimental data.

For HGJBs, a typical case (case 2 in Table I, detailed by Hirs (1965) and Jang
and Chang (2000)) is studied and the predicted load capacity is shown in
Figure 4. This figure shows that, for HGJBs, with the increase of eccentricity
ratio, the load capacity will increase, just like the experimental data, which
were given by Hirs (1965). Figure 4 also shows that for HGJBs, the numerical
results match very well with the experimental data.

4. Studies of the pumping effect of herringbone grooves
As shown in Figure 1, there are two “legs” for each herringbone groove: AB and
BC. For the convenience in analyzing the journal bearings’ performance, we
divide the HGJB into two parts along the line of the apexes (the dashed line in
Figure 1): part I and part II. In symmetrical HGJBs, the geometric parameters in
these two parts are the same. So, for symmetrical HGJBs, we have: L1 ¼ L2;

Case 1 (plain-JB) Case 2 (HGJBs)

Number of grooves 0 8
c (m) 1.455 £ 1024 6.0 £ 1026

R (m) 0.05 0.002
L/D 4/3 1.0
1 0.61 0.60
vs 248.1(rad/s) 5,000(rpm)
b (N/m2) 1.72 £ 109 1.72 £ 109

m (N/m2) 0.0127 0.00124
PB (N/m2) 0.0 0.0
Pc (N/m2) 272139.79 272139.79
a (deg) – 70.0
hg1/c 0.0 1.0
hg2/c 0.0 1.0
wg/wr – 1.0

Table I.
Geometrical dimension

and operating
conditions
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a1 ¼ a2; hg1 ¼ hg2: While in non-symmetrical HGJBs, one or several
geometrical parameters are not the same between parts I and II. In this part
of our project, a symmetrical HGJB case (case 3 in Table II) is introduced to
study the herringbone grooves’ pumping effect. In this case, the geometrical
and operating conditions are similar to case 2 (Table I), except that the
eccentricity ratio is variable. In order to compare the stability between HGJBs
and plain JBs, a case of plain JB (case 4 in Table II) is introduced. The
geometrical and operating conditions are similar between case 3 and case 4,

Figure 3.
Comparison of predicted
pressure with
experimental data

Figure 4.
Comparison of
non-dimensional load
capacity for HGJBs
(case 2 of Table I)
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except that in case 4, no grooves in the journal or bearing’s surface (the
so-called plain-JBs), while in case 3, herringbone grooves are engraved in the
outside surface of the shaft or in the inside surface of the bush (the so-called
HGJBs). The numerical results are shown in Figures 5-12.

4.1 The stability analysis of HGJBs and plain JBs
For rotating machinery, especially those operating at high speed, the instability
is one of the main problems. There are many factors, which may cause the
rotating machine’s instability, such as the magnetic pulls, aerodynamic forces
on turbine or compressor blades, gear impacts, etc. In journal bearings, the
lubricant films themselves might originate the undesirable self-excited
vibration, known as “half-frequency whirl”, in which the shaft orbits around
the center of the bearing at a frequency approximately equal to half of the

Case 3 (HGJBs) Case 4 (plain-JBs)

Number of grooves 8 0
c (m) 6.0 £ 1026 6.0 £ 1026

R (m) 0.002 0.002
L/D 1.0 1.0
1 0.01-0.80 0.01-0.80
v (rpm) 5,000 5,000
b (N/m2) 1.72£ 109 1.72£ 109

m (N/m2) 0.00124 0.00124
hg1/c 1.0 0
hg2/c 1.0 0
a (8) 70 –
wg/wr 1.0 –
PB (N/m2) 0.0 0.0
Pc (N/m2) 272139.79 272139.79

Table II.
Geometrical and

operating conditions of
journal bearings

Figure 5.
Attitude angle of HGJBs

and plain-JBs due to
eccentricity ratio
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spinning or rotational velocity of the shaft, or a little less (Fuller, 1984). In
journal bearings’ operation, this is one of the most serious forms of instability,
which will cause destructive damage to the journal bearings. Hagg (1946)
showed that when the “half-frequency whirl” occurs, the capacity of the
bearing to support radial loads falls to zero, which means that FR (the pressure

Figure 6.
Load capacity of HGJBs
and plain-JBs due to
eccentricity ratio

Figure 7.
Comparison of the
dimensionless pressure
distribution between the
HGJBs and the plain JBs
at different eccentricity
ratios

(continued)
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force acting along the line of centers, equation (14)) equals zero. Thus, if Fw (the
pressure force normal to the line of centers, equation (13)) does not equal zero,
the attitude angle f will almost equal 908 (equation (12)).

For the cases studied (case 3 and case 4 in Table II), the numerical results
of attitude angle are presented in Figure 5. This figure shows that for plain
JBs, the instable condition – the half-frequency whirl – will occur at small
values of the eccentricity ratio (1), now that the attitude angle is almost 908
when 1 is very small ð1 # 0:36 in case 3 of Table II). With the increase of 1,

Figure 8.
Comparison of the
dimensionless pressure
(along the middle line)
between the HGJBs and
plain-JBs.
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the attitude angle will decrease. When 1 equals 0.50, the attitude angle reaches
about 818.

On the other hand, for HGJBs, Figure 5 shows that even 1 is very small (for
example, 1 ¼ 0:02Þ; the attitude angle is about 818, much smaller than 908.
With the increase of 1, the attitude angle also decreases. This figure shows that
for HGJBs, the unstable condition – the half-frequency whirl – will never
occur. This is one of the main advantages of HGJBs: compared to plain JBs, the
HGJBs are much more stable.

4.2 Comparison of load capacities of HGJBs and plain JBs
The load capacities of the HGJBs and plain JBs are shown in Figure 6. For
HGJBs, this figure shows that, the load capacity increases with the increase of
eccentricity ratio, just like the plain-JBs, however, the variation of HGJBs is
relatively small than that of the plain-JBs. Thus, in terms of load capacity, for

Figure 9.
Cavitation ratio of HGJBs

and plain-JBs due to
eccentricity ratio

Figure 10.
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the light loaded journal bearings, the difference between HGJBs and plain-JBs
is very small. However, for heavy loaded journal bearings, the plain JB may be
better than the HGJBs, now that at the same eccentricity ratio, the plain-JBs’
load capacity is bigger than that of the HGJBs.

4.3 The pressure and cavitation distribution of HGJBs and plain JBs
For the case studies (cases 3 and 4 in Table II), some of the results about the
pressure and cavitation distrubution are shown in Figures 7-10. Figure 7 shows

Figure 11.
Pressure distribution
(along the grooves at
2px ¼ 0.9817 or
x ¼ 0.15625)

(continued)
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the dimensionless pressure distribution in the unwrapped geometrical region,
while Figure 8 shows the dimensionless pressure profiles along the middle line
(the dashed line in Figure 1) along the circumferential direction, for HGJBs and
plain-JBs, respectively.

Figure 11.

Figure 12.
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Figures 7 and 8 show that the pressure distribution is different between HGJBs
and plain JBs, especially when the eccentricity ratio is small. This is because of
herringbone grooves’ pumping effect: lubricant is pumped inward the journal
bearings along the herringbone grooves, thus pressure is built up along the
grooves, even in the divergent region of the bearings’ fluid film (the pressure is
higher than the boundary pressure in the grooves), and when the eccentricity
ratio tends to zero, the pressure distribution becomes periodic (Figure 8). On the
other hand, for plain-JBs, no pressure is set up in the divergent region of
bearings’ fluid film; when the eccentricity ratio tends to zero, the pressure
distribution becomes zero (unstable conditions of half-frequency whirl). This is
why there is half-frequency whirl for plain JBs, but no half-frequency whirl for
herringbone journal bearings, even the eccentricity ratio is very small.

As shown in Figure 7, with the increase of eccentricity ratio, the maximum
pressure in the fluid film of journal bearings will increase. When the
eccentricity ratio increases to some critical value, the cavitation will occur in
the fluid film, even though this value is not the same between HGJBs and
plain-JBs. Figures 9 and 10 compare the cavitation distribution between HGJBs
and plain-JBs.

For the liquid lubricated journal bearings, inside its fluid film, the cavitation
is often caused by the fall of pressure in the lubricant. However, for HGJBs,
because of the herringbone grooves’ pumping effect, the pressure is generated
inside the grooves, even in the divergent region of the bearings’ fluid film. So,
inside the fluid film of HGJBs, this kind of pressure (generated due to the
herringbone grooves’ pumping effect) can prevent the formation of cavitation,
or reduce the area of the cavitated region to some extent, as shown in Figures 9
and 10. Figure 9 shows that for plain JBs, the cavitation begins to occur in fluid
film when the eccentricity ratio is about 0.36, while for HGJBs, there is no
cavitation until the eccentricity ratio is higher than 0.67. Figure 10 shows that,
once the cavitation occurs in the fluid film, at the same eccentricity ratio, the
area of the cavitated region is different between the HGJBs and the plain-JBs:
the cavitation region of HGJBs is much less than that of the plain-JBs.

4.4 Discussion
By adding herringbone grooves on the surface of journal bearings, the fluid is
pumped inward the journal bearings along the grooves, then the pressure is
built up along the grooves, even in the divergent region of the bearings’ fluid
film. Compared with the plain JBs, this kind of pressure can prevent cavitation
in the fluid film and increase the journal bearings’ stability. For HGJBs, when
the eccentricity ratio tends to zero, the pressure distribution becomes periodic,
which contributes to its stability: no “half-frequency whirl” in HGJBs. On the
other side, it also decreases the corresponding maximum pressure (compared
with the plain JBs) in the fluid film, and decreases the journal bearings load
capacity.
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5. Study the performance of non-symmetrical HGJBs
For non-symmetrical HGJBs, there are many different cases to study, now that
there are so many geometrical parameters in each part (Figure 1). In this part,
we will study the effect of the groove-length ratio ðL1 : L2 ¼ AB : BCÞ and the
groove-depth ratio (hg1 : hg2) on the performances of the non-symmetrical
HGJBs, which means that, between parts I and II (Figure 1), the groove length
or groove depth may not be the same ðL1 – L2 or hg1 – hg2Þ; while others are
the same. As shown in Table III, two cases are introduced, in which the
geometrical and operating conditions are based on case 2 of Table I. The
numerical results are presented and discussed later.

5.1 The influence of groove-length ratio on non-symmetrical HGJBs
Case 5 (Table III) was used to study the effect of groove-length ratio ðL1 : LÞ on
the performance of non-symmetrical HGJBs. The numerical results are
presented in Figures 11-14.

5.1.1 The pressure and cavitation distribution due to the groove-length ratio.
The pressure and cavitation distribution is shown in Figures 11-13. Figure 11
shows the pressure distribution along the groove direction at 2px ¼ 0:9817 (or
x ¼ 0:15625Þ; when the eccentricity ratio is varied from 0.02 to 0.80 and the
length ratio ðL1 : LÞ changes from 0.50 to 0.70 ðL1 : L þ L2 : L ¼ 1:0Þ:
Figures 12 and 13 show the pressure and cavitation distribution in the
unwrapped geometrical region due to different groove-length ratio when the
eccentricity ratio equals 0.80.

Case 5 Case 6

Number of grooves 8 8
c (m) 6.0 £ 1026 6.0 £ 1026

R (m) 0.002 0.002
L/D 1.0 1.0
1 0.01-0.80 0.01-0.80
v (rpm) 5,000 5,000
b (N/m2) 1.72 £ 109 1.72 £ 109

m (N/m2) 0.00124 0.00124
L1/L *Variable 0.50
L2/L *Variable 0.50
hg1/c 1.0 *Variable
hg2/c 1.0 *Variable
a1 (8) 70 70
a2 (8) 70 70
wg/wr 1.0 1.0
PB (N/m2) 0.0 0.0
Pc (N/m2) 272139.79 272139.79

Note*: – the geometrical and operating conditions of HGJBs used in cases 5 and 6.

Table III.
Geometrical and

operating conditions of
HGJBs
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Figure 13.

Figure 14.
The dimensionless load
capacity (a) and attitude
angle (b) due to the
groove-length ratio and
the eccentricity ratio
(epsn)
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For liquid-lubricated journal bearings, when the eccentricity ratio is not equal
to zero, the fluid film is separated into two regions: the convergent region and
the divergent region. In this case, the groove where 2px ¼ 0:9817 (or x ¼
0:15625Þ in the x-axis (Figure 1) is located in the convergent region.
Figures 11-13 show that, for non-symmetrical HGJBs, the pressure and
cavitation distribution is asymmetrical, even the peak pressure is always
reached at the apex of the herringbone grooves. When the groove-length ratio
ðL1 : LÞ changes from 0.50 to 0.70, the cavitated region will be mainly located in
part I of the fluid film, as shown in Figure 13.

5.1.2 The load capacity and attitude angle due to the groove-length ratio.
Figure 14 shows the variance of dimensionless load capacity and attitude angle
due to the variance of the groove-length ratio and the eccentricity ratio. This
figure shows that, when the eccentricity ratio (1 or epsn in Figure 14) is not
very large (1 # 0:60; for example in this case), the non-symmetrical HGJBs’
dimensionless load capacity and attitude angle almost remain constant (at a
constant eccentricity ratio), even though the groove-length ratio (L1:L) changes
from 0.50 to 0.70. It means that the influence of groove-length ratio on HGJBs’
dimensionless load capacity and attitude angle can be ignored. On the other
hand, when the eccentricity ratio increases to 0.80, the influence of
groove-length ratio on HGJBs’ dimensionless load capacity and attitude
angle cannot be ignored.

5.1.3 Discussion. In this part, we studied the influence of the groove-length
ratio on the performance of non-symmetrical HGJBs. The groove-length ratio
(L1 : L; varying from 0.50 to 0.70) and the eccentricity ratio (varying from
0.02 to 0.80) are considered. From the perspective of dimensionless load
capacity and attitude angle, at a constant eccentricity ratio ð1 # 0:60Þ; the
influence of groove-length ratio ðL1 : LÞ is very small (Figure 14). However,
the pressure distribution shows that the influence of the groove-length ratio
is very evident: at the same eccentricity ratio, along the groove, the peak
pressure is always reached at the apex of the herringbone grooves (in the
convergent region of the fluid film) when the groove-length ratio ðL1 : LÞ
changes from 0.50 to 0.70, and when the eccentricity increases to some
values, the cavitation will occur in the fluid film, thus, not only the pressure
and cavitation distribution of the fluid film, but also the load capacity and
attitude angle of HGJBs show that the influence of groove-length ratio cannot
be ignored.

5.2 Effect of groove-depth ratio on non-symmetrical HGJBs
To study the effect of groove-depth ratio on the performance of
non-symmetrical HGJBs, we assume that the depth of the grooves in part I is
not equal to the depth of grooves in part II (Figure 1), even though in each part
the groove depth is the same, respectively. We set hg1 : c ¼ 1:0 and change the
value of hg2 : c from 0.2 to 1.0, thus hg2 : hg1 will vary from 0.2 to 1.0, while

Herringbone
grooved journal

bearings

359



other geometrical parameters of the two parts are the same (such as L1 ¼ L2;
a1 ¼ a2 and so on). The numerical results are shown in Figures 15-18.

5.2.1 The pressure and cavitation distribution due to the groove-depth ratio.
Figure 15 shows the pressure profiles along the grooves at 2px ¼ 0:9817 (or
x ¼ 0:15625Þ in the fluid film. Just like what we have discussed earlier, in this
case, the groove where x ¼ 0:15625 in the x-axis is still located in the
convergent region of the fluid film. Figures 16 and 17 show the pressure and
cavitation distribution of the fluid film due to the variance of the groove-depth

Figure 15.
(continued)
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ratio ðhg2 : hg1 ¼ 0:2 � 1Þ under a constant eccentricity ratio ð1 ¼ 0:80Þ:
Figure 15 shows that the maximum pressure along the groove is always
located at the apex of the herringbone groove. As shown in Figures 15-17, at a
constant eccentricity ratio, when the groove-depth ratio is not equal to 1, the
pressure and cavitation distribution is not symmetrical. Different groove’s
depth caused different pumping effect on the fluid. Hence, the pressure field
and the cavitation distribution are different. The higher the groove-depth, the
stronger is the groove’s pumping effect.

5.2.2 The load capacity and attitude angle due to the groove-depth ratio.
Figure 18 shows the dimensionless load capacity and the attitude angle’s
variance due to the groove-depth ratio and the eccentricity ratio. It shows that,
at a constant groove-depth ratio, with the increase of the eccentricity ratio, the

Figure 16.
Dimensionless pressure
distribution due to the

groove-depth ratio (hg1 :
hg2) for HGJBs (case 6 of
Table III) at 1¼0.80. (a)
hg1 : hg2¼1:0.5; and (b)

hg1 :hg2¼1 : 1

Figure 15.
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dimensionless load capacity will also increase, while the attitude angle will
decrease. On the other hand, because of the grooves’ pumping effect to the fluid,
at a constant eccentricity ratio, with the increase of the groove-depth ratio,
the dimensionless load capacity will decrease. For attitude angle, only if the
eccentricity ratio is not very large (for example, when 1 # 0:65Þ; then, at the
same eccentricity ratio, with the increase of the groove-depth ratio, the attitude
angle will decrease too. This is because that when the eccentricity ratio is not
very large, there is no cavitation in the fluid film, then with the increase of the
groove-depth ratio, the attitude angle will decrease. When the eccentricity ratio
increases to some critical values, the cavitation will occur in the fluid film and
the increase of the cavitated region will largely decrease the attitude angle. In
other words, once the cavitation occurs in the fluid film, the influence of the
cavitated region area on the attitude angle is much stronger than that of the
groove-depth ratio. As shown in Figure 18(b), when 1 $ 0:70; with the increase
of the groove-depth ratio (at the same eccentricity ratio), the attitude angle will
also increase.

5.2.3 Discussion. In this part, we study the influence of the groove-depth
ratio on the performance of non-symmetrical HGJBs. For this kind of
non-symmetrical HGJBs, because the two parts have different groove depth,
the grooves’ pumping effect in the two parts are different from each other.
Thus, the pressure and cavitation distribution is different between the two
parts, even though the highest value of pressure is always located in the
line of herringbone grooves’ apexes. In terms of load capacity and attitude
angle, at the same groove-depth ratio, with the increase of the eccentricity
ratio, the dimensionless load capacity will increase, while the attitude angle
will decrease (Figure 18). On the other hand, at a constant eccentricity ratio,
the dimensionless load capacity decreases with the increase of the
groove-depth ratio.

Figure 17.
Cavitation distribution
due to the groove-depth
ratio for HGJBs (case 6 of
Table III) at 1 ¼ 0.80.
(a) hg1 : hg2¼1:0.5;
(b) hg1 : hg2¼1 : 1
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6. Conclusion
In this paper, first of all, a modified Elrod’s algorithm is used to study the
pumping effect of herringbone grooves: by engraving herringbone grooves on
the surface of journal bearings, the cavitation region in fluid film is reduced
obviously while comparing with the plain JBs (at the same eccentricity ratio).
The journal bearing’s stability is increased evidently: the HGJBs are free from
one of the instable conditions – the half-frequency whirl. This is because of the
herringbone grooves’ pumping effect: the lubricant is pumped into the journal
bearing along the grooves, thus the pressure is built up along the grooves.

Figure 18.
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When the HGJBs work at high rotating speed and low or non-eccentricity ratio,
this kind of pressure will highly increase the shaft’s self-centered ability, thus it
will be more stable, compared with the plain JBs.

With the increase of the eccentricity ratio, the cavitation may occur in the
fluid film of the HGJBs, both for plain JBs and for HGJBs. However, at the same
eccentricity ratio, the cavitation ratio of the HGJB is much less than that of the
plain JB. It is also found that, while working at the same eccentricity ratio, the
HGJB’s load capacity is less than that of the plain JB.

With the increase of the eccentricity ratio, the dimensionless load capacity
will also increase, while the attitude angle will decrease. It is the same for all
kinds of journal bearings studied here. However, the variation of the
dimensionless load capacity and the attitude angle due to the eccentricity ratio
is different for plain journal bearings, symmetrical and non-symmetrical
HGJBs.

For the non-symmetrical HGJBs, the effect of the groove-length ratio and the
groove-depth ratio on the HGJBs’ performance is investigated. It is found that,
for the asymmetrical groove patterns, the pressure and cavitation distribution
within the fluid film of the journal bearing is asymmetrical. The influence of the
groove-length ratio or the groove-depth ratio on the herringbone grooves’
pumping effect is very evident.
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